eeeee

] q

VR =

= Access of constant memory on the device (i.e., from a kernel)
works just like with any globally declared variable

= Example:

constant Sphere c_spheres[MAX NUM SPHERES] ;

__device
bool intersect(const Ray & ray, int s, Hit * hit)
{
Vec3 m(c_spheres[s].center - ray.orig);
float g = m*m - c_spheres[s].radius*c spheres[s].radius;
float p = ...
solve quadratic(p, q, *tl, *t2);

(t-d—m)2:r2 > t* —2t-md +m? — r’ =0

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 51

eeeeee

G. Zachmann Massively Parallel Algorithms SS) May 2013

i

<n

“
g

...

Some Considerations on Constant Memory 5

= Size of constant memory on the GPU is fairly limited (~48 KB)

» Check cudaDeviceProp
= Reads from constant memory can be very fast:

= "Nearby" threads accessing the same constant memory location incur
only a single read operation (saves bandwidth by up to factor 16!)

= Constant memory is cached (i.e., consecutive reads will not incur
additional traffic)

= Caveats:

= If "nearby" threads read from
different memory locations
— traffic jam!

Fundamental Algos & Introduction to CUDA 52

eeeee

New Terminology

= Warp := 32 threads next to each other
= Each block's set of threads is partitioned into warps

= All threads within a warp are executed on a single
streaming multiprocessor (SM) in lockstep

memory location — one read instruction by SM

memory locations — 32 different read
instructions by SM, one after another!

= |n our raytracing example, everything is fine (if

there is no bug ©)

"Nearby threads" = all threads within a warp

If all threads in a warp read from the same

If all threads in a warp read from random

J

FooE

fy,u?_{u}.""
LI EL
e il ln iy I

- pUB 4 In _,.'g
%fii')pﬁ 2 1 A e v, (o (e
i ¥ FUEEENERE VT

For more details: see "Performance with constant memory" on course web page

G. Zachmann Massively Parallel Algorithms

) May 2013

Fundamental Algos & Introduction to CUDA 53

Bremen

W Overview of a GPU's Architecture

Memory Controller Memory Controller Memory Controller

o
-
T
o
5
:
o
o
-
$
=%
L4
w
o
&

Memory Controller Memory Controller Memory Controller

Nvidia's Kepler architecture as of 2012 (192 single-precision cores / 15 SMX)

54

Fundamental Algos & Introduction to CUDA

) May 2013

SS

Massively Parallel Algorithms

G. Zachmann

Bremen

Y one Streaming Multiprocessor

SMX
Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
S RS S g -1 I

Register File (65,536 x 32-bit)

RS s 2 I s Rl
osT SFU Core Core Core

SFU Core Core
SFU Core Core
SFU Core
SFU Core
SFU
SFU
SFU
SFU
LoistT SFU
SFU
SFU
SFU
SFU
SFU Core Core

LoisT SFU Core Core
= Interconnect Network === =
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

-L
-L

Tex Tex

Tex Tex

G. Zachmann Massively Parallel Algorithms SS) May 2013

Warp Scheduler

Dispatch
-

Dispatch
R

Fundamental Algos & Introduction to CUDA

55

eeeeee

W Thread Divergence Revisited %§

= This execution of threads in lockstep fashion on one SMX (think
SIMD) is the reason, why thread divergence is so bad

= Thread divergence can occur at each occurrence of if-then-
else, while, for, and switch (all control statements)

= Example:

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 56

eeeeee

= The more complex your control flow graph (this is called
cyclometric complexity), the more thread divergence can occur!

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

57

Y Consequences for You as an Algorithm Designer / Programmer =

= Try to devise algorithms that consist of kernels with very low
cyclometric complexity

= Avoid recursion (would probably further increase thread divergence)
= The other reason is that we would need one stack per thread

= If your algorithm heavily relies on recursion, then it may not be well suited
for massive (data) parallelism!

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 58

Bremen

U Measuring Performance on the GPU

= Advice: experiment with a few different block layouts, e.g., dim3
threads (16,16) and dim3 threads(128,2) ; then
compare performance

= CUDA API for timing: create events

// create two "event" structures

cudaEvent t start, stop;

cudaEventCreate (&start) ; cudaEventCreate (&stop) ;
// insert the start event in the queue
cudaEventRecord(start, 0);

now do something on the GPU, e.g., launch kernel

cudaEventRecord(stop, 0); // put stop into queue
cudaEventSynchronize(stop); // wait for 'stop' to finish
float elapsedTime; // print elapsed time

cudaEventElapsedTime (&elapsedTime, start, stop);
printf ("Time to exec kernel = %$f ms\n", elapsedTime) ;

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

! ?@;/""&"._
B

<n
oo

eeeeee

Y On CPU/GPU Synchronization .

A

VR =

= All kernel launches are asynchronous:
= Control returns to CPU immediately
= Kernel starts executing once all previous CUDA calls have completed

= You can even launch another kernel without waiting for the first to finish

- They will still be executed one after another
= Memcopies are synchronous:
= Control returns to CPU once the copy is complete

= Copy starts once all previous CUDA calls have completed
" cudaDeviceSynchronize():

= Blocks until all previous CUDA calls are complete

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 60

. /x;
l@) ¥ co
VR

cuda- kernel a kernel x cuda-
Memcpy <<<gl1,b1>> <<<g2,b2>> Memcpy

™
SOOI
w&\\'\\\\\

= Advantage of asynchronous CUDA calls:
= CPU can work on other stuff while GPU is working on number crunching

= Ability to overlap memcopies and kernel execution (we don't use this
special feature in this course)

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 61

U Why Bother with Blocks?

= The concept of blocks seems unnecessary:

= |t adds a level of complexity
= The CUDA compiler could have done the partitioning of a range of
threads into a grid of blocks for us
= What do we gain?
= Unlike parallel blocks, threads within a block have mechanisms to

communicate & synchronize very quickly

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 62

eeeeee

W Computing the Dot Product

= Next goal: compute

N
d=xy= ZXIYI
for large vectors i=0

= We know how to do (x;y;) on the GPU,
but how do we do the summation?

= Naive (pseudo-parallel) algorithm:

= Compute vector z with z; = x;y; in parallel

= Transfer vector z back to CPU, and do summation sequentially
= Another (somewhat) naive solution:

= Compute vector z in parallel

= Do summation of all z; in thread O

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

63

eeeeee

W Cooperating Threads / Shared Memory

= Shared Memory:
= A block of threads can have some amount of shared memory

= All threads within a block have the same "view" of this
- Just like with global memory

= BUT, access to shared memory is much faster!
- Kind of a user-managed cache

= Not visible/accessible to other blocks

= Every block has their own copy
- So allocate only enough for one block

= Declared with qualifier __shared

Threads Threads Threads

Shared Memory Shared Memory Shared Memory

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

64

eeeeee

i ¢ g
&) Overview of the Efficient Dot Product

A[O] | A[1] | A[2] | A[3] | A[4] | ... |AIn+0]|A[n+1]|A[n+2] [A[n+3][A[n+4]| ... | A[N-1]

T T T I I [- Clobal
memory

B[O] | B[1] | B[2] | B[3] | B[4] | ... [B[n+0]|B[n+1]|B[n+2]|B[n+3]|B[n+4]| ... | B[N-1]

cro] | e | cz1 | ci31 | cra cro] | et | cz1 [a3 | cra }Shared
memory

. C[N-1]
\ J \ v J \ J

2 7 5

<

P[O] | P[1] | P[2] | P[3] - . P[N/512] } memory
Host
P[O] | P[1] | P[2] | P[3] . P[n] - P[N/512] memory

el T

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 65

Efficiently Computing the Summation Reduction

= Terminology: computing a smaller output vector (stream) from

one/more larger input vectors is called reduction

= Here summation reduction

= The pattern here:

C[0] C[1] C[2] C[N/2-11 | C[N/2] | C[N/2+1] | C[N/2+2] C[N-1]
° OV’M 1. iteration
C[0] C[1] C[2] C[N/2-1]1 | C[N/2] | C[N/2+1] | C[N/2+2] C[N-1]
C[0] C[1] C[2] C[N/2-11 | C[N/2] | C[N/2+1] | C[N/2+2] C[N-1]
é/ log,(N)-th iteration
C[0] C[1] C[2] C[N/2-11 | C[N/2] | C[N/2+1] | C[N/2+2] C[N-1]

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

' CG e
VR

66

eeeee

‘g
The complete kernel for the dot product -t
__global .
void dotprod(float *a, float *b, float *p, int N) This code
__shared float cache[threadsPerBlock] ; contains a bug!

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if (tid < N)
cache[threadIdx.x] = a[tid] * b[tid];

// for reductions, threadsPerBlock must be a pon AAndthatbug
int i = blockDim.x/2; is probably
while (i '= 0) { hard to find!

if (threadIdx.x < i)
cache[threadIdx.x] += cache[threadIdx.x + 1i];

// last thread copies partial sum to global memory
if (threadlIdx.x == 0)
p[blockIdx.x] = cache[0];

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 67

eeeee

The complete kernel for the dot product

__global

void dotprod(float *a, float *b, float *p, int N) {
__shared float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;

if (tid < N)
cache[threadIdx.x] = a[tid] * b[tid];

// for reductions, threadsPerBlock must be a power of 2!
__syncthreads() ;
int i = blockDim.x/2;
while (i !'= 0) {
if (threadIdx.x < i)
cache[threadIdx.x] += cache[threadIdx.x + 1i];
__syncthreads() ;
i/=2;
}

// last thread copies partial sum to global memory
if (threadlIdx.x == 0)
p[blockIdx.x] = cache[0];

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

% CG §
VR

68

eeeeee

W New Concept: Barrier Synchronization

—

0

" The command implements what is called a barrier synchronization
(or just "barrier"):
All threads wait at this point in the execution of their program,
until all other threads have arrived at this same point

Thread 0 __syncthreads ()
Thread 1 __syncthreads ()
Thread 2 __syncthreads ()

Thread 3 __syncthreads ()
__syncthreads ()

Thread 4

= Warning: threads are only synchronized within a block!

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 69

eeeee

.

Y The Complete Dot Product Program £ g

// allocate host & device arrays h a, d a, etc.
// h c, d p = arrays holding partial sums

dotprod<<< nBlocks, nThreadsPerBlock >>>(d a, d b, d p, N);
transfer d p -> h p
float prod = 0.0;

for (int i = 0; i < nBlocks, i ++)
prod += h p[i];

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 70

eeeeee

Y How to Compute the Dot-Product Completely on the GPU

= You might want to compute the dot-product complete on the GPU
= Because you need the result on the GPU anyway

" |dea:
1. Compute partial sums with one kernel
2. With another kernel, compute final sum of partial sums

= Gives us automatically a sync/barrier between first/second kernel

Block O Block 1 Block 2

Tt -

{ D)

\ e Kernel 1 (paW
v

& Kernel 2 (final sums) j

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 71

—r

A Caveat About Barrier Synchronization S

= You might consider optimizing the kernel like so:

__global
void dotprod(float *a, float *b, float *c, int This code

{ contains a bug!
// just like before

// incorrectly optimized reduction
__syncthreads() ;
int i = blockDim.x/2;
while (i '= 0) {
if (threadIdx.x < i)
{

It makes your
GPU hang ...!

cache[threadIdx.x] += cache[threadIdx.x + 1i];
__syncthreads() ;

}
i /= 2;
}

// rest as before

= |dea: only wait for threads that were actually writing to memory ...

= Bug: the barrier will never be fulfilled!

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 72

New Concepts & Terminology

= A race condition occurs when overall program behavior depends
upon relative timing of two (or more) event sequences

= Frequent case: two processes (threads) read-modify-write the

loineyag 109110

G. Zachmann

same memory location (variable)

Thread 1 nggd Thread 2
Read €——
Modify
Write —>
> Read
Modify
<—1— Write
\ 4 \ 4 \ 4

Massively Parallel Algorithms

Thread 1

Modify

Write -

Read €¢—

SS) May 2013

Fundamental Algos & Introduction to CUDA

Shared
Data Thread 2
> Read
Modify
<——— Write
\ 4 \ 4

¥ cc

JOIABYD9g 132410DU|

VR

73

eeeeee

. g 3
W Race Conditions O

VR

= Race conditions come in three different kinds of hazards:
= Read-after-write hazard (RAW): true data dependency, most common type

= Write-after-read hazard (WAR): anti-dependency (basically the same as RAW)
= Write-after-write hazard (WAW): output dependency

= Consider this (somewhat contrived) example:

= Given input vector x, compute output vector
y = (X0*X1, X0*X1, X2¥X3, X2¥X3, X4*X5, X4*X5, ...)

= Approach: two threads, one for odd/even numbered elements

kernel (const float * x, float * y, int N) {
__shared cache[2];
for (int i = 0; i < N/2; i ++) {
cache[threadldx.x] = x[2*i + threadIdx.x];
y[2*1 + threadIdx.x] = cache[0] * cache[l];

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 74

Y f A

= Execution in a warp, i.e., in lockstep:

Thread O Thread 1
cache[0] = x[0]; cache[l] = x[1];
y[0] = cache[0] * cachel[l]; y[1l] = cache[0] * cache[l];
cache[0] = x[2]; cache[l] = x[3];
y[2] = cache[0] * cache[l]; y[3] = cache[0] * cache[l];
cache[0] = x[4]; cache[l] = x[5];
y[4] = cache[0] * cache[l]; y[5] = cache[0] * cache[l];

= Everything is fine

= |n the following, we consider execution on different warps / SMs

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 75

eeeee

.
<n
0

Thread O Thread 1
cache[0] = x[0]; Read-after-write hazard!]
y[0] = cache[0] * cachel[l];

cache[l] = x[1];
y[1l] = cache[0] * cache[l];

cache[0] = x[2];
y[2] = cache[0] * cache[l];
cache[l] = x[3];
y[3] = cache[0] * cache[l];

cache[0] = x[4];
yv[4] = cache[0] * cache[l];
cache[l] = x[5];
y[5] = cache[0] * cache[l];

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 76

e

eeeee

= Remedy:

kernel (const float * x,

float * y, int N)

= x[2*i + threadIdx.x];

y[2*1i + threadIdx.x] = cache[0] * cache[l];

{
__shared cache[2];
for (int i = 0; i < N/2; i ++)
{
cache[threadIdx. x]
__syncthreads() ;
}
}

G. Zachmann Massively Parallel Algorithms SS

) May 2013 Fundamental Algos & Introduction to CUDA

..

. CG X

VR

77

eeeee

7,

Thread O Thread 1

cache[0] = x[0];
cache[l] = x[1];
syncthreads ()

70 = exEalit] v caeaa|il) g (Re-)Write-after-read hazard!
cache[0] = x[2] /€

y[1l] ="cache[0] * cache[l];
cache[l] = x[3];

syncthreads ()

y[2] = cache[0] * cache[l];
cache[0] = x[4] ;€

——-;TET\;*bache[O] * cache[l];

cache[l] = x[5];

syncthreads ()

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA 78

e

eeeee

= Final remedy:

kernel(const float * x, float * y, int N)

{
__shared cache[2];
for (int i = 0; i < N/2; i ++)
{
cache[threadIdx.x] = x[2*i + threadIdx.x];
__syncthreads() ;
yv[2*1 + threadIdx.x] = cache[0] * cache[l];
__syncthreads() ;
}
}

= Note: you'd never design the algorithm this way!

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

L 208

<n

e

0

79

eeeeee

Y Digression: Race Conditions are an Entrance Door for Hackers

= Race conditions occur in all environments and programming
languages (that provide some kind of parallelism)

= CVE-2009-2863:

= Race condition in the Firewall Authentication Proxy feature in Cisco 10S
12.0 through 12.4 allows remote attackers to bypass authentication, or
bypass the consent web page, via a crafted request.

= CVE-2013-1279:

= Race condition in the kernel in Microsoft [...] Windows Server 2008 SP2,
R2, and R2 SP1, Windows 7 Gold and SP1, Windows 8, Windows Server
2012, and Windows RT allows local users to gain privileges via a crafted
application that leverages incorrect handling of objects in memory, aka
"Kernel Race Condition Vulnerability".

= Many more: search for "race condition" on http://cvedetails.com/

G. Zachmann Massively Parallel Algorithms SS) May 2013 Fundamental Algos & Introduction to CUDA

80

