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§  Access of constant memory on the device (i.e., from a kernel) 
works just like with any globally declared variable 

§  Example: 

__constant__ Sphere c_spheres[MAX_NUM_SPHERES]; 
 
__device__ 
bool intersect( const Ray & ray, int s, Hit * hit ) 
{ 
   Vec3 m( c_spheres[s].center – ray.orig ); 
   float q = m*m – c_spheres[s].radius*c_spheres[s].radius; 
   float p = ... 
   solve_quadratic( p, q, *t1, *t2 ); 
   ... 
} 

m d
r

M

P
t1

t2

(t ·d�m)2 = r2 t2 � 2t ·md + m2 � r2 = 0⇒ 
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Some Considerations on Constant Memory 

§  Size of constant memory on the GPU is fairly limited (~48 KB) 

§  Check cudaDeviceProp  

§  Reads from constant memory can be very fast: 

§  "Nearby" threads accessing the same constant memory location incur 
only a single read operation (saves bandwidth by up to factor 16!) 

§  Constant memory is cached (i.e., consecutive reads will not incur 
additional traffic) 

§  Caveats: 

§  If "nearby" threads read from  
different memory locations 
→ traffic jam! 
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New Terminology 

§  "Nearby threads" = all threads within a warp 

§  Warp := 32 threads next to each other 

§  Each block's set of threads is partitioned into warps 

§  All threads within a warp are executed on a single 
streaming multiprocessor (SM) in lockstep 

§  If all threads in a warp read from the same 
memory location → one read instruction by SM 

§  If all threads in a warp read from random 
memory locations → 32 different read 
instructions by SM, one after another! 

§  In our raytracing example, everything is fine (if 
there is no bug J ) 

For more details: see "Performance with constant memory" on course web page 
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Overview of a GPU's Architecture 

Nvidia's Kepler architecture as of 2012 (192 single-precision cores / 15 SMX) 
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One Streaming Multiprocessor 
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Thread Divergence Revisited 

§  This execution of threads in lockstep fashion on one SMX (think 
SIMD) is the reason, why thread divergence is so bad 

§  Thread divergence can occur at each occurrence of if-then-
else, while, for, and switch  (all control statements) 

§  Example: 

1. pass 

2. pass 
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Control Flow Divergence

BranchBranch

Path A

Path C

Branch

Path B

§  The more complex your control flow graph (this is called 
cyclometric complexity), the more thread divergence can occur! 
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Consequences for You as an Algorithm Designer / Programmer 

§  Try to devise algorithms that consist of kernels with very low 
cyclometric complexity 

§  Avoid recursion (would probably further increase thread divergence) 

§  The other reason is that we would need one stack per thread 

§  If your algorithm heavily relies on recursion, then it may not be well suited 
for massive (data) parallelism! 
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Measuring Performance on the GPU 

§  Advice: experiment with a few different block layouts, e.g., dim3 
threads(16,16) and dim3 threads(128,2) ;  then 
compare performance  

§  CUDA API for timing: create events 

// create two "event" structures 
cudaEvent_t start, stop; 
cudaEventCreate(&start); cudaEventCreate(&stop);  
// insert the start event in the queue 
cudaEventRecord( start, 0 ); 
now do something on the GPU, e.g., launch kernel ... 
 

cudaEventRecord( stop, 0 );    // put stop into queue 
cudaEventSynchronize( stop );  // wait for 'stop' to finish 
float elapsedTime;             // print elapsed time  
cudaEventElapsedTime( &elapsedTime, start, stop ); 
printf("Time to exec kernel = %f ms\n", elapsedTime ); 
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On CPU/GPU Synchronization 

§  All kernel launches are asynchronous: 

§  Control returns to CPU immediately  

§  Kernel starts executing once all previous CUDA calls have completed  

§  You can even launch another kernel without waiting for the first to finish 

-  They will still be executed one after another 

§  Memcopies are synchronous: 

§  Control returns to CPU once the copy is complete  

§  Copy starts once all previous CUDA calls have completed  

§  cudaDeviceSynchronize(): 

§  Blocks until all previous CUDA calls are complete  
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§  Think of GPU & CPU as connected through a pipeline: 

§  Advantage of asynchronous CUDA calls: 

§  CPU can work on other stuff while GPU is working on number crunching 

§  Ability to overlap memcopies and kernel execution (we don't use this 
special feature in this course) 

cuda- 
Memcpy 

kernel a 
<<<g1,b1>>> 

kernel x 
<<<g2,b2>>> 

cuda- 
Memcpy 
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Why Bother with Blocks? 

§  The concept of blocks seems unnecessary: 

§  It adds a level of complexity 

§  The CUDA compiler could have done the partitioning of a range of 
threads into a grid of blocks for us 

§  What do we gain?  

§  Unlike parallel blocks, threads within a block have mechanisms to 
communicate & synchronize very quickly 
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Computing the Dot Product 

§  Next goal: compute 
 
for large vectors 

§  We know how to do (xiyi) on the GPU, 
but how do we do the summation? 

§  Naïve (pseudo-parallel) algorithm: 

§  Compute vector z with zi = xiyi  in parallel 

§  Transfer vector z back to CPU, and do summation sequentially 

§  Another (somewhat) naïve solution: 

§  Compute vector z in parallel 

§  Do summation of all zi  in thread 0 

d = x·y =
NX

i=0

xiyi

01/02/12%

20%

Dot Product 

•  Parallel%threads%have%no%problem%compu:ng%the%pairwise%products:%

•  So%we%can%start%a%dot%product%CUDA%kernel%by%doing%just%that:%
     __global__ void dot( int *a, int *b, int *c )   { 
         // Each thread computes a pairwise product 
       int temp = a[threadIdx.x] * b[threadIdx.x]; 

Dot Product 

•  But%we%need%to%share%data%between%threads%to%compute%the%final%sum:%

%
    __global__ void dot( int *a, int *b, int *c )   { 
          // Each thread computes a pairwise product 
 
          int temp = a[threadIdx.x] * b[threadIdx.x];'
 
          // Can’t compute the final sum  
          // Each thread’s copy of ‘temp’ is private!!! 
    } 
 

01/02/12%

22%

Parallel Dot Product Recap 

  We perform parallel, pairwise multiplications 

  Shared memory stores each thread’s result 

  We sum these pairwise products from a single thread 

  Sounds good… 

 

But… 

Exercise:%Compile%and%run%dot_simple_threads.cu.%%
Does%it%work%as%expected?.

Faulty Dot Product Exposed! 

  Step 1: In parallel, each thread writes a pairwise product 

  Step 2: Thread 0 reads and sums the products 

  But there’s an assumption hidden in Step 1… 

__shared__ int temp'

__shared__ int temp'
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Cooperating Threads / Shared Memory 

§  Shared Memory: 
§  A block of threads can have some amount of shared memory 

§  All threads within a block have the same "view" of this 
-  Just like with global memory 

§  BUT, access to shared memory is much faster! 
-  Kind of a user-managed cache 

§  Not visible/accessible to other blocks 

§  Every block has their own copy 
-  So allocate only enough for one block 

§  Declared with qualifier __shared__ 

01/02/12%

21%

Sharing Data Between Threads 
  Terminology: A block of threads shares memory called… 

  Extremely fast, on-chip memory (user-managed cache) 

  Declared with the __shared__ CUDA keyword 

  Not visible to threads in other blocks running in parallel 

shared memory 

Shared%Memory%

Threads%

Block%0%

Shared%Memory%

Threads%

Block%1%

Shared%Memory%

Threads%

Block%2%

…'

Parallel Dot Product: dot() 
  We perform parallel multiplication, serial addition: 

 
 #define N  512 
 __global__ void dot( int *a, int *b, int *c ) { 
       // Shared memory for results of multiplication   
   __shared__ int temp[N]; 
   temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x]; 
        
       // Thread 0 sums the pairwise products 
   if( 0 == threadIdx.x ) { 
       int sum = 0; 
       for( int i = N-1; i >= 0; i-- ){ 
            sum += temp[i]; 

     }  
       *c = sum; 
   } 
 } 
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* 

Overview of the Efficient Dot Product 

A[0] A[1] A[2] A[3] A[4] A[N-1] 

B[0] B[1] B[2] B[3] B[4] B[N-1] 

C[0] C[1] C[2] C[3] C[4] C[N-1] 

* * * * * 

. . . 

. . . 

. . . 

A[n+0] A[n+1] A[n+2] A[n+3] A[n+4] 

B[n+0] B[n+1] B[n+2] B[n+3] B[n+4] 

C[0] C[1] C[2] C[3] C[4] 

* * * * * 

. . . 

. . . 

. . . 

P[0] P[1] P[2] P[3] . . . P[N/512] 

Global 
memory 

Shared 
memory 

Σ Σ 

P[n] . . . 

Σ 

Global 
memory 

P[0] P[1] P[2] P[3] . . . P[N/512] P[n] . . . 
Host 
memory 

Σ 
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§  Terminology: computing a smaller output vector (stream) from 
one/more larger input vectors is called reduction 

§  Here summation reduction 

§  The pattern here: 

Efficiently Computing the Summation Reduction 

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . . 

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . . 

+ + + 

C[N/2-1] 

C[N/2-1] 

+ 

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . . C[N/2-1] 

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . . C[N/2-1] 

+ 

.  .  .           .  .  .                            .  .  . 

1. iteration 

log2(N)-th iteration 
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The complete kernel for the dot product 

__global__  
void dotprod( float *a, float *b, float *p, int N ) { 
   __shared__ float cache[threadsPerBlock]; 
   int tid = threadIdx.x + blockIdx.x * blockDim.x; 
 

   if ( tid < N ) 
        cache[threadIdx.x] = a[tid] * b[tid]; 
 

   // for reductions, threadsPerBlock must be a power of 2! 
 
   int i = blockDim.x/2; 
   while ( i != 0 ) { 
      if ( threadIdx.x < i ) 
         cache[threadIdx.x] += cache[threadIdx.x + i]; 
  
      i /= 2; 
   } 
 

   // last thread copies partial sum to global memory 
   if ( threadIdx.x == 0 ) 
      p[blockIdx.x] = cache[0]; 
} 

This code  
contains a bug! 

And that bug  
is probably  

hard to find! 
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The complete kernel for the dot product 

__global__  
void dotprod( float *a, float *b, float *p, int N ) { 
   __shared__ float cache[threadsPerBlock]; 
   int tid = threadIdx.x + blockIdx.x * blockDim.x; 
 

   if ( tid < N ) 
        cache[threadIdx.x] = a[tid] * b[tid]; 
 

   // for reductions, threadsPerBlock must be a power of 2! 
 __syncthreads(); 
   int i = blockDim.x/2; 
   while ( i != 0 ) { 
      if ( threadIdx.x < i ) 
         cache[threadIdx.x] += cache[threadIdx.x + i]; 
      __syncthreads(); 
      i /= 2; 
   } 
 

   // last thread copies partial sum to global memory 
   if ( threadIdx.x == 0 ) 
      p[blockIdx.x] = cache[0]; 
} 
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New Concept: Barrier Synchronization 

§  The command implements what is called a barrier synchronization 
(or just "barrier"): 
All threads wait at this point in the execution of their program, 
until all other threads have arrived at this same point 

§  Warning: threads are only synchronized within a block! 

01/02/12%

24%

__syncthreads() 
 We can synchronize threads with the function __syncthreads() 

  Threads in the block wait until all threads have hit the __syncthreads() 

  Threads are only synchronized within a block! 

 

__syncthreads()'

__syncthreads()'

__syncthreads()'

__syncthreads()'

__syncthreads()'

Thread 0%
Thread 1%
Thread 2%

Thread 3%

Thread 4%…
'

Parallel Dot Product: dot() 
 __global__ void dot( int *a, int *b, int *c ) { 
   __shared__ int temp[N]; 
   temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x]; 
 
       __syncthreads();  
 
       if( 0 == threadIdx.x ) { 
           int sum = 0; 
           for( int i = N-1; i >= 0; i-- ){ 
               sum += temp[i]; 

    } 
           *c = sum; 
       } 
 } 

  With a properly synchronized dot() routine, let’s look at main() 
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The Complete Dot Product Program 

// allocate host & device arrays h_a, d_a, etc. 
// h_c, d_p = arrays holding partial sums 
 
dotprod<<< nBlocks, nThreadsPerBlock >>>( d_a, d_b, d_p, N ); 
 
transfer d_p -> h_p 
 
float prod = 0.0; 
for ( int i = 0; i < nBlocks, i ++ ) 
   prod += h_p[i]; 
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Kernel 2 (final sums) 

Kernel 1 (partial sums) 

How to Compute the Dot-Product Completely on the GPU 

§  You might want to compute the dot-product complete on the GPU 
§  Because you need the result on the GPU anyway 

§  Idea: 
1.  Compute partial sums with one kernel 
2.  With another kernel, compute final sum of partial sums 

§  Gives us automatically a sync/barrier between first/second kernel 

. . . 
Block 0 Block 1 Block 2 
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A Caveat About Barrier Synchronization 

§  You might consider optimizing the kernel like so: 

 

§  Idea: only wait for threads that were actually writing to memory … 

§  Bug: the barrier will never be fulfilled! 

__global__  
void dotprod( float *a, float *b, float *c, int N ) 
{ 
   // just like before ... 
 

   // incorrectly optimized reduction 
   __syncthreads(); 
   int i = blockDim.x/2; 
   while ( i != 0 ) { 
      if ( threadIdx.x < i ) 
      { 
         cache[threadIdx.x] += cache[threadIdx.x + i]; 
         __syncthreads(); 
      } 
      i /= 2; 
   } 
   // rest as before ... 

This code  
contains a bug! 

It makes your 
GPU hang …! 
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New Concepts & Terminology 

§  A race condition occurs when overall program behavior depends 
upon relative timing of two (or more) event sequences 

§  Frequent case: two processes (threads) read-modify-write the 
same memory location (variable) 

Thread 1 

Read 

Modify 

Write 

Shared 
Data Thread 2 

Read 

Modify 

Write 

C
orrect Behavior 

Thread 1 

Read 

Modify 

Write 

Shared 
Data Thread 2 

Read 

Modify 

Write 

Incorrect Behavior 
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Race Conditions 

§  Race conditions come in three different kinds of hazards: 

§  Read-after-write hazard (RAW): true data dependency, most common type 

§ Write-after-read hazard (WAR): anti-dependency (basically the same as RAW) 

§ Write-after-write hazard (WAW): output dependency 

§  Consider this (somewhat contrived) example: 

§  Given input vector x, compute output vector  
              y = ( x0*x1, x0*x1, x2*x3, x2*x3, x4*x5, x4*x5, … ) 

§  Approach: two threads, one for odd/even numbered elements 

kernel( const float * x, float * y, int N )  { 
   __shared__ cache[2]; 
   for ( int i = 0; i < N/2; i ++ )   { 
      cache[threadIdx.x] = x[ 2*i + threadIdx.x]; 
      y[2*i + threadIdx.x] = cache[0] * cache[1]; 
   } 
} 
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§  Execution in a warp, i.e., in lockstep: 

§  Everything is fine 

§  In the following, we consider execution on different warps / SMs 

cache[0] = x[0];                 cache[1] = x[1]; 
y[0] = cache[0] * cache[1];      y[1] = cache[0] * cache[1]; 
 

cache[0] = x[2];                 cache[1] = x[3]; 
y[2] = cache[0] * cache[1];      y[3] = cache[0] * cache[1]; 
 

cache[0] = x[4];                 cache[1] = x[5]; 
y[4] = cache[0] * cache[1];      y[5] = cache[0] * cache[1]; 
... 

Thread 0 Thread 1 
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cache[0] = x[0];  
y[0] = cache[0] * cache[1];       
                                 cache[1] = x[1]; 
                                 y[1] = cache[0] * cache[1]; 
 

cache[0] = x[2];  
y[2] = cache[0] * cache[1];       
                                 cache[1] = x[3]; 
                                 y[3] = cache[0] * cache[1]; 
 

cache[0] = x[4];  
y[4] = cache[0] * cache[1];       
                                 cache[1] = x[5]; 
                                 y[5] = cache[0] * cache[1]; 
... 

Thread 0 Thread 1 

Read-after-write hazard! 



G. Zachmann 77 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS 

§  Remedy: 

kernel( const float * x, float * y, int N )   

{ 

   __shared__ cache[2]; 

   for ( int i = 0; i < N/2; i ++ )    

   { 

      cache[threadIdx.x] = x[ 2*i + threadIdx.x]; 

      __syncthreads(); 

      y[2*i + threadIdx.x] = cache[0] * cache[1]; 

   } 

} 
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cache[0] = x[0];  
                                cache[1] = x[1]; 
——————————————————- syncthreads() ————————————————————————— 
 

y[0] = cache[0] * cache[1];       
cache[0] = x[2];  
                                 y[1] = cache[0] * cache[1]; 
                                 cache[1] = x[3]; 
——————————————————- syncthreads() ————————————————————————— 
 

y[2] = cache[0] * cache[1];       
cache[0] = x[4];  
                                 y[3] = cache[0] * cache[1]; 
                                 cache[1] = x[5]; 
——————————————————- syncthreads() ————————————————————————— 
... 

Thread 0 Thread 1 

(Re-)Write-after-read hazard! 
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§  Final remedy: 

§  Note: you'd never design the algorithm this way! 

kernel( const float * x, float * y, int N )   

{ 

   __shared__ cache[2]; 

   for ( int i = 0; i < N/2; i ++ )    

   { 

      cache[threadIdx.x] = x[ 2*i + threadIdx.x]; 

      __syncthreads(); 

      y[2*i + threadIdx.x] = cache[0] * cache[1]; 

      __syncthreads(); 

   } 

} 
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Digression: Race Conditions are an Entrance Door for Hackers 

§  Race conditions occur in all environments and programming 
languages (that provide some kind of parallelism) 

§  CVE-2009-2863: 

§  Race condition in the Firewall Authentication Proxy feature in Cisco IOS 
12.0 through 12.4 allows remote attackers to bypass authentication, or 
bypass the consent web page, via a crafted request. 

§  CVE-2013-1279: 

§  Race condition in the kernel in Microsoft […] Windows Server 2008 SP2, 
R2, and R2 SP1, Windows 7 Gold and SP1, Windows 8, Windows Server 
2012, and Windows RT allows local users to gain privileges via a crafted 
application that leverages incorrect handling of objects in memory, aka 
"Kernel Race Condition Vulnerability". 

§  Many more: search for "race condition" on http://cvedetails.com/  


