
G. Zachmann 51 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

§  Access of constant memory on the device (i.e., from a kernel)
works just like with any globally declared variable

§  Example:

__constant__ Sphere c_spheres[MAX_NUM_SPHERES];

__device__
bool intersect(const Ray & ray, int s, Hit * hit)
{
 Vec3 m(c_spheres[s].center – ray.orig);
 float q = m*m – c_spheres[s].radius*c_spheres[s].radius;
 float p = ...
 solve_quadratic(p, q, *t1, *t2);
 ...
}

m d
r

M

P
t1

t2

(t ·d�m)2 = r2 t2 � 2t ·md + m2 � r2 = 0⇒

G. Zachmann 52 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Some Considerations on Constant Memory

§  Size of constant memory on the GPU is fairly limited (~48 KB)

§  Check cudaDeviceProp

§  Reads from constant memory can be very fast:

§  "Nearby" threads accessing the same constant memory location incur
only a single read operation (saves bandwidth by up to factor 16!)

§  Constant memory is cached (i.e., consecutive reads will not incur
additional traffic)

§  Caveats:

§  If "nearby" threads read from
different memory locations
→ traffic jam!

G. Zachmann 53 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

New Terminology

§  "Nearby threads" = all threads within a warp

§  Warp := 32 threads next to each other

§  Each block's set of threads is partitioned into warps

§  All threads within a warp are executed on a single
streaming multiprocessor (SM) in lockstep

§  If all threads in a warp read from the same
memory location → one read instruction by SM

§  If all threads in a warp read from random
memory locations → 32 different read
instructions by SM, one after another!

§  In our raytracing example, everything is fine (if
there is no bug J)

For more details: see "Performance with constant memory" on course web page

G. Zachmann 54 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Overview of a GPU's Architecture

Nvidia's Kepler architecture as of 2012 (192 single-precision cores / 15 SMX)

G. Zachmann 55 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

One Streaming Multiprocessor

G. Zachmann 56 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Thread Divergence Revisited

§  This execution of threads in lockstep fashion on one SMX (think
SIMD) is the reason, why thread divergence is so bad

§  Thread divergence can occur at each occurrence of if-then-
else, while, for, and switch (all control statements)

§  Example:

1. pass

2. pass

G. Zachmann 57 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Control Flow Divergence

BranchBranch

Path A

Path C

Branch

Path B

§  The more complex your control flow graph (this is called
cyclometric complexity), the more thread divergence can occur!

G. Zachmann 58 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Consequences for You as an Algorithm Designer / Programmer

§  Try to devise algorithms that consist of kernels with very low
cyclometric complexity

§  Avoid recursion (would probably further increase thread divergence)

§  The other reason is that we would need one stack per thread

§  If your algorithm heavily relies on recursion, then it may not be well suited
for massive (data) parallelism!

G. Zachmann 59 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Measuring Performance on the GPU

§  Advice: experiment with a few different block layouts, e.g., dim3
threads(16,16) and dim3 threads(128,2) ; then
compare performance

§  CUDA API for timing: create events

// create two "event" structures
cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
// insert the start event in the queue
cudaEventRecord(start, 0);
now do something on the GPU, e.g., launch kernel ...

cudaEventRecord(stop, 0); // put stop into queue
cudaEventSynchronize(stop); // wait for 'stop' to finish
float elapsedTime; // print elapsed time
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time to exec kernel = %f ms\n", elapsedTime);

G. Zachmann 60 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

On CPU/GPU Synchronization

§  All kernel launches are asynchronous:

§  Control returns to CPU immediately

§  Kernel starts executing once all previous CUDA calls have completed

§  You can even launch another kernel without waiting for the first to finish

-  They will still be executed one after another

§  Memcopies are synchronous:

§  Control returns to CPU once the copy is complete

§  Copy starts once all previous CUDA calls have completed

§  cudaDeviceSynchronize():

§  Blocks until all previous CUDA calls are complete

G. Zachmann 61 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

§  Think of GPU & CPU as connected through a pipeline:

§  Advantage of asynchronous CUDA calls:

§  CPU can work on other stuff while GPU is working on number crunching

§  Ability to overlap memcopies and kernel execution (we don't use this
special feature in this course)

cuda-
Memcpy

kernel a
<<<g1,b1>>>

kernel x
<<<g2,b2>>>

cuda-
Memcpy

G. Zachmann 62 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Why Bother with Blocks?

§  The concept of blocks seems unnecessary:

§  It adds a level of complexity

§  The CUDA compiler could have done the partitioning of a range of
threads into a grid of blocks for us

§  What do we gain?

§  Unlike parallel blocks, threads within a block have mechanisms to
communicate & synchronize very quickly

G. Zachmann 63 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Computing the Dot Product

§  Next goal: compute

for large vectors

§  We know how to do (xiyi) on the GPU,
but how do we do the summation?

§  Naïve (pseudo-parallel) algorithm:

§  Compute vector z with zi = xiyi in parallel

§  Transfer vector z back to CPU, and do summation sequentially

§  Another (somewhat) naïve solution:

§  Compute vector z in parallel

§  Do summation of all zi in thread 0

d = x·y =
NX

i=0

xiyi

01/02/12%

20%

Dot Product

•  Parallel%threads%have%no%problem%compu:ng%the%pairwise%products:%

•  So%we%can%start%a%dot%product%CUDA%kernel%by%doing%just%that:%
 __global__ void dot(int *a, int *b, int *c) {
 // Each thread computes a pairwise product
 int temp = a[threadIdx.x] * b[threadIdx.x];

Dot Product

•  But%we%need%to%share%data%between%threads%to%compute%the%final%sum:%

%
 __global__ void dot(int *a, int *b, int *c) {
 // Each thread computes a pairwise product

 int temp = a[threadIdx.x] * b[threadIdx.x];'

 // Can’t compute the final sum
 // Each thread’s copy of ‘temp’ is private!!!
 }

01/02/12%

22%

Parallel Dot Product Recap

  We perform parallel, pairwise multiplications

  Shared memory stores each thread’s result

  We sum these pairwise products from a single thread

  Sounds good…

But…

Exercise:%Compile%and%run%dot_simple_threads.cu.%%
Does%it%work%as%expected?.

Faulty Dot Product Exposed!

  Step 1: In parallel, each thread writes a pairwise product

  Step 2: Thread 0 reads and sums the products

  But there’s an assumption hidden in Step 1…

__shared__ int temp'

__shared__ int temp'

G. Zachmann 64 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Cooperating Threads / Shared Memory

§  Shared Memory:
§  A block of threads can have some amount of shared memory

§  All threads within a block have the same "view" of this
-  Just like with global memory

§  BUT, access to shared memory is much faster!
-  Kind of a user-managed cache

§  Not visible/accessible to other blocks

§  Every block has their own copy
-  So allocate only enough for one block

§  Declared with qualifier __shared__

01/02/12%

21%

Sharing Data Between Threads
  Terminology: A block of threads shares memory called…

  Extremely fast, on-chip memory (user-managed cache)

  Declared with the __shared__ CUDA keyword

  Not visible to threads in other blocks running in parallel

shared memory

Shared%Memory%

Threads%

Block%0%

Shared%Memory%

Threads%

Block%1%

Shared%Memory%

Threads%

Block%2%

…'

Parallel Dot Product: dot()
  We perform parallel multiplication, serial addition:

 #define N 512
 __global__ void dot(int *a, int *b, int *c) {
 // Shared memory for results of multiplication
 __shared__ int temp[N];
 temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

 // Thread 0 sums the pairwise products
 if(0 == threadIdx.x) {
 int sum = 0;
 for(int i = N-1; i >= 0; i--){
 sum += temp[i];

 }
 *c = sum;
 }
 }

G. Zachmann 65 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

*

Overview of the Efficient Dot Product

A[0] A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3] B[4] B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1]

* * * * *

. . .

. . .

. . .

A[n+0] A[n+1] A[n+2] A[n+3] A[n+4]

B[n+0] B[n+1] B[n+2] B[n+3] B[n+4]

C[0] C[1] C[2] C[3] C[4]

* * * * *

. . .

. . .

. . .

P[0] P[1] P[2] P[3] . . . P[N/512]

Global
memory

Shared
memory

Σ Σ

P[n] . . .

Σ

Global
memory

P[0] P[1] P[2] P[3] . . . P[N/512] P[n] . . .
Host
memory

Σ

G. Zachmann 66 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

§  Terminology: computing a smaller output vector (stream) from
one/more larger input vectors is called reduction

§  Here summation reduction

§  The pattern here:

Efficiently Computing the Summation Reduction

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . .

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . .

+ + +

C[N/2-1]

C[N/2-1]

+

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . . C[N/2-1]

C[N-1] C[N/2] C[N/2+1] C[N/2+2] . . . C[0] C[1] C[2] . . . C[N/2-1]

+

.

1. iteration

log2(N)-th iteration

G. Zachmann 67 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

The complete kernel for the dot product

__global__
void dotprod(float *a, float *b, float *p, int N) {
 __shared__ float cache[threadsPerBlock];
 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 if (tid < N)
 cache[threadIdx.x] = a[tid] * b[tid];

 // for reductions, threadsPerBlock must be a power of 2!

 int i = blockDim.x/2;
 while (i != 0) {
 if (threadIdx.x < i)
 cache[threadIdx.x] += cache[threadIdx.x + i];

 i /= 2;
 }

 // last thread copies partial sum to global memory
 if (threadIdx.x == 0)
 p[blockIdx.x] = cache[0];
}

This code
contains a bug!

And that bug
is probably

hard to find!

G. Zachmann 68 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

The complete kernel for the dot product

__global__
void dotprod(float *a, float *b, float *p, int N) {
 __shared__ float cache[threadsPerBlock];
 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 if (tid < N)
 cache[threadIdx.x] = a[tid] * b[tid];

 // for reductions, threadsPerBlock must be a power of 2!
 __syncthreads();
 int i = blockDim.x/2;
 while (i != 0) {
 if (threadIdx.x < i)
 cache[threadIdx.x] += cache[threadIdx.x + i];
 __syncthreads();
 i /= 2;
 }

 // last thread copies partial sum to global memory
 if (threadIdx.x == 0)
 p[blockIdx.x] = cache[0];
}

G. Zachmann 69 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

New Concept: Barrier Synchronization

§  The command implements what is called a barrier synchronization
(or just "barrier"):
All threads wait at this point in the execution of their program,
until all other threads have arrived at this same point

§  Warning: threads are only synchronized within a block!

01/02/12%

24%

__syncthreads()
 We can synchronize threads with the function __syncthreads()

  Threads in the block wait until all threads have hit the __syncthreads()

  Threads are only synchronized within a block!

__syncthreads()'

__syncthreads()'

__syncthreads()'

__syncthreads()'

__syncthreads()'

Thread 0%
Thread 1%
Thread 2%

Thread 3%

Thread 4%…
'

Parallel Dot Product: dot()
 __global__ void dot(int *a, int *b, int *c) {
 __shared__ int temp[N];
 temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

 __syncthreads();

 if(0 == threadIdx.x) {
 int sum = 0;
 for(int i = N-1; i >= 0; i--){
 sum += temp[i];

 }
 *c = sum;
 }
 }

  With a properly synchronized dot() routine, let’s look at main()

G. Zachmann 70 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

The Complete Dot Product Program

// allocate host & device arrays h_a, d_a, etc.
// h_c, d_p = arrays holding partial sums

dotprod<<< nBlocks, nThreadsPerBlock >>>(d_a, d_b, d_p, N);

transfer d_p -> h_p

float prod = 0.0;
for (int i = 0; i < nBlocks, i ++)
 prod += h_p[i];

G. Zachmann 71 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Kernel 2 (final sums)

Kernel 1 (partial sums)

How to Compute the Dot-Product Completely on the GPU

§  You might want to compute the dot-product complete on the GPU
§  Because you need the result on the GPU anyway

§  Idea:
1.  Compute partial sums with one kernel
2.  With another kernel, compute final sum of partial sums

§  Gives us automatically a sync/barrier between first/second kernel

. . .
Block 0 Block 1 Block 2

G. Zachmann 72 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

A Caveat About Barrier Synchronization

§  You might consider optimizing the kernel like so:

§  Idea: only wait for threads that were actually writing to memory …

§  Bug: the barrier will never be fulfilled!

__global__
void dotprod(float *a, float *b, float *c, int N)
{
 // just like before ...

 // incorrectly optimized reduction
 __syncthreads();
 int i = blockDim.x/2;
 while (i != 0) {
 if (threadIdx.x < i)
 {
 cache[threadIdx.x] += cache[threadIdx.x + i];
 __syncthreads();
 }
 i /= 2;
 }
 // rest as before ...

This code
contains a bug!

It makes your
GPU hang …!

G. Zachmann 73 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

New Concepts & Terminology

§  A race condition occurs when overall program behavior depends
upon relative timing of two (or more) event sequences

§  Frequent case: two processes (threads) read-modify-write the
same memory location (variable)

Thread 1

Read

Modify

Write

Shared
Data Thread 2

Read

Modify

Write

C
orrect Behavior

Thread 1

Read

Modify

Write

Shared
Data Thread 2

Read

Modify

Write

Incorrect Behavior

G. Zachmann 74 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Race Conditions

§  Race conditions come in three different kinds of hazards:

§  Read-after-write hazard (RAW): true data dependency, most common type

§ Write-after-read hazard (WAR): anti-dependency (basically the same as RAW)

§ Write-after-write hazard (WAW): output dependency

§  Consider this (somewhat contrived) example:

§  Given input vector x, compute output vector
 y = (x0*x1, x0*x1, x2*x3, x2*x3, x4*x5, x4*x5, …)

§  Approach: two threads, one for odd/even numbered elements

kernel(const float * x, float * y, int N) {
 __shared__ cache[2];
 for (int i = 0; i < N/2; i ++) {
 cache[threadIdx.x] = x[2*i + threadIdx.x];
 y[2*i + threadIdx.x] = cache[0] * cache[1];
 }
}

G. Zachmann 75 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

§  Execution in a warp, i.e., in lockstep:

§  Everything is fine

§  In the following, we consider execution on different warps / SMs

cache[0] = x[0]; cache[1] = x[1];
y[0] = cache[0] * cache[1]; y[1] = cache[0] * cache[1];

cache[0] = x[2]; cache[1] = x[3];
y[2] = cache[0] * cache[1]; y[3] = cache[0] * cache[1];

cache[0] = x[4]; cache[1] = x[5];
y[4] = cache[0] * cache[1]; y[5] = cache[0] * cache[1];
...

Thread 0 Thread 1

G. Zachmann 76 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

cache[0] = x[0];
y[0] = cache[0] * cache[1];
 cache[1] = x[1];
 y[1] = cache[0] * cache[1];

cache[0] = x[2];
y[2] = cache[0] * cache[1];
 cache[1] = x[3];
 y[3] = cache[0] * cache[1];

cache[0] = x[4];
y[4] = cache[0] * cache[1];
 cache[1] = x[5];
 y[5] = cache[0] * cache[1];
...

Thread 0 Thread 1

Read-after-write hazard!

G. Zachmann 77 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

§  Remedy:

kernel(const float * x, float * y, int N)

{

 __shared__ cache[2];

 for (int i = 0; i < N/2; i ++)

 {

 cache[threadIdx.x] = x[2*i + threadIdx.x];

 __syncthreads();

 y[2*i + threadIdx.x] = cache[0] * cache[1];

 }

}

G. Zachmann 78 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

cache[0] = x[0];
 cache[1] = x[1];
——————————————————- syncthreads() —————————————————————————

y[0] = cache[0] * cache[1];
cache[0] = x[2];
 y[1] = cache[0] * cache[1];
 cache[1] = x[3];
——————————————————- syncthreads() —————————————————————————

y[2] = cache[0] * cache[1];
cache[0] = x[4];
 y[3] = cache[0] * cache[1];
 cache[1] = x[5];
——————————————————- syncthreads() —————————————————————————
...

Thread 0 Thread 1

(Re-)Write-after-read hazard!

G. Zachmann 79 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

§  Final remedy:

§  Note: you'd never design the algorithm this way!

kernel(const float * x, float * y, int N)

{

 __shared__ cache[2];

 for (int i = 0; i < N/2; i ++)

 {

 cache[threadIdx.x] = x[2*i + threadIdx.x];

 __syncthreads();

 y[2*i + threadIdx.x] = cache[0] * cache[1];

 __syncthreads();

 }

}

G. Zachmann 80 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 10 May 2013 SS

Digression: Race Conditions are an Entrance Door for Hackers

§  Race conditions occur in all environments and programming
languages (that provide some kind of parallelism)

§  CVE-2009-2863:

§  Race condition in the Firewall Authentication Proxy feature in Cisco IOS
12.0 through 12.4 allows remote attackers to bypass authentication, or
bypass the consent web page, via a crafted request.

§  CVE-2013-1279:

§  Race condition in the kernel in Microsoft […] Windows Server 2008 SP2,
R2, and R2 SP1, Windows 7 Gold and SP1, Windows 8, Windows Server
2012, and Windows RT allows local users to gain privileges via a crafted
application that leverages incorrect handling of objects in memory, aka
"Kernel Race Condition Vulnerability".

§  Many more: search for "race condition" on http://cvedetails.com/

